

Virtual Learning

May 14, 2020

Medical Interventions Lesson: May 14, 2020

Objective/Learning Target:

Use blood typing and HLA typing results to determine to match an organ donor with a compatible recipient. (4.3.2)

Let's Get Started:

- 1. Organ donors and recipients must have compatible blood types or the organ transplant will fail. Review the concepts surrounding <u>blood typing</u> and play this Nobel Prize <u>game</u> to refresh your memory on the topic.
- 2. Complete the pedigree and answer the questions on genotypes in this <u>blood typing practice</u>.

Lesson Activity

It's not enough to just have a blood type match. Further tests are needed to ensure the organ does not get rejected by the immune system. Watch <u>this video</u> to learn about HLA typing and answer the questions below.

- 1. What is HLA?
- 2. What is the role of HLA in the body?
- 3. Why is HLA typing more complex than blood typing?
- 4. What does a close HLA match allow?
- 5. How is HLA inherited and what is the ideal HLA match for most doctors?

Lesson Activity - Answers

It's not enough to just have a blood type match. Further tests are needed to ensure the organ does not get rejected by the immune system. Watch <u>this video</u> to learn about HLA typing and answer the questions below.

- 1. What is HLA?
 - a. Human Leukocyte antigens, found on most of the cells in body
- 2. What is the role of HLA in the body?
 - a. Determine what belongs and what doesn't belong in the body
- 3. Why is HLA typing more complex than blood typing?
 - a. There are many more versions of HLA that make a person unique as opposed to blood typing
- 4. What does a close HLA match allow?
 - a. Engraftment
- 5. How is HLA inherited and what is the ideal HLA match for most doctors?
 - a. Half from each parent, at least 8-10 HLA marker match

Practice

Complete the chart below to determine who would be the best match for patient A.

Blood Sample	Agglutination with Anti-A Serum (+/-)	Agglutination with Anti-B Serum (+/-)	Agglutination with Anti-Rh Serum (+/-)	Blood Type	Possible Genotype(s)	HLA-A, HLA-B, and HLA-DR Antigens
Patient A	+	-	+			HLA-A2, HLA-A10, HLA-B7, HLA-B16, HLA-DR11, HLA-DR8
Donor 1	+	-	+			HLA-A 1, HLA-A 10, HLA-B 3, HLA-B 16, HLA-DR 8, HLA-DR 35
Donor 2	-	+	+			HLA-A 1, HLA-A 6, HLA-B 3, HLA-B 9, HLA-DR 35, HLA-DR 4
Donor 3	+	-	+			HLA-A 10, HLA-A 2, HLA-B 7, HLA-B 16, HLA-DR 8, HLA-DR 11
Donor 4	-	-	+			HLA-A 6, HLA-A 2, HLA-B 7, HLA-B 9, HLA-DR 11, HLA-DR 4
Donor 5	-	+	+			HLA-A 2, HLA-A 40, HLA-B 7, HLA-B 6, HLA-DR 11, HLA-DR 5
Donor 6	+	+	+			HLA-A 1, HLA-A 10, HLA-B 8, HLA-B 16, HLA-DR 20, HLA-DR 8
Donor 7	-	-	+			HLA-A 1, HLA-A 2, HLA-B 8, HLA-B 7, HLA-DR 11, HLA-DR 20

Practice - Answer

Donor 3 would be the best match with both compatible bloody types and HLA typing.

Blood Sample	Agglutination with Anti-A Serum (+/-)	Agglutination with Anti-B Serum (+/-)	Agglutination with Anti-Rh Serum (+/-)	Blood Type	Possible Genotype(s)	HLA-A, HLA-B, and HLA-DR Antigens
Patient A	+	-	+	A+	IAIA or IAi	HLA-A2, HLA-A10, HLA-B7, HLA-B16, HLA-DR11, HLA-DR8
Donor 1	+	-	+	A+	IAIA or IAi	HLA-A 1, HLA-A 10, HLA-B 3, HLA-B 16, HLA-DR 8, HLA-DR 35
Donor 2	-	+	+	B+	IBIB or IBi	HLA-A 1, HLA-A 6, HLA-B 3, HLA-B 9, HLA-DR 35, HLA-DR 4
Donor 3*	+	-	+	A+	IAIA or IAi	HLA-A 10, HLA-A 2, HLA-B 7, HLA-B 16, HLA-DR 8, HLA-DR 11
Donor 4	-	-	+	0+	ii	HLA-A 6, HLA-A 2, HLA-B 7, HLA-B 9, HLA-DR 11, HLA-DR 4
Donor 5	-	+	+	B+	IBIB or IBi	HLA-A 2, HLA-A 40, HLA-B 7, HLA-B 6, HLA-DR 11, HLA-DR 5
Donor 6	+	+	+	AB+	IAIB	HLA-A 1, HLA-A 10, HLA-B 8, HLA-B 16, HLA-DR 20, HLA-DR 8
Donor 7	-	-	+	0+	ii	HLA-A 1, HLA-A 2, HLA-B 8, HLA-B 7, HLA-DR 11, HLA-DR 20

Additional Practice/Resources

- After the blood testing and HLA typing is complete, further testing is needed to ensure there is histocompatibility- learn about the PRA and crossmatch tests <u>here</u>.
- 2. Explain to a family member the process of finding an organ donation including the testing that ensures a successful procedure.
- 3. Check your understanding by reviewing with these <u>flashcards</u>.
- 4. Read about a new technique that may be able to detect rejections using a <u>smartphone, CRISPR, and your own pee</u>.